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Because punishment is scarce, costly, and painful, optimal enforce-
ment strategies will minimize the amount of actual punishment
required to effectuate deterrence. If potential offenders are suffi-
ciently deterrable, increasing the conditional probability of punish-
ment (given violation) can reduce the amount of punishment actually
inflicted, by ‘‘tipping’’ a situation from its high-violation equilibrium
to its low-violation equilibrium. Compared to random or ‘‘equal
opportunity’’ enforcement, dynamically concentrated sanctions can
reduce the punishment level necessary to tip the system, especially if
preceded by warnings. Game theory and some simple and robust
Monte Carlo simulations demonstrate these results, which, in addi-
tion to their potential for reducing crime and incarceration, may have
implications for both management and regulation.

crime � enforcement � game theory � positive feedback � tipping

Humans cooperate; the extent of cooperation among humans
marks them out from all other species (1, 2). But cooperation

is vulnerable to exploitation through aggression, deception, oppor-
tunistic defection from agreements, and free-riding. Where coop-
erative strategies are suboptimal for individuals, mutually beneficial
arrangements will fail to arise, or will degenerate (3–5).

Under experimental conditions, some individuals will voluntarily
incur costs to themselves to punish noncooperative behavior; doing
so can facilitate cooperation by reducing the potential gains from
exploitation (1, 4, 6). Thus punishment is a basic element of human
social interaction.

As punishment is always costly, both to the punisher and (obvi-
ously) to those punished, a well-designed enforcement system
should combine high efficacy in discouraging exploitative behavior
with low actual infliction of sanctions. At first blush, it might seem
that these 2 objectives are in fundamental tension; that more
compliance requires more punishment. But 3 law-enforcement
examples seem to support the contrary proposition.

First, when the New York City Police Department implemented
a ‘‘zero tolerance’’ policy toward ‘‘squeegeeing’’—penny-ante ex-
tortion involving wiping the windshields of cars stuck in traffic and
then ‘‘requesting’’ payment from the drivers—by arresting every
squeegee-man observed plying his trade, the number of actual arrests
for squeegeeing went down, not up (7). The same happened when the
New York City Transit Police cracked down on ‘‘turnstile-jumping.’’

Second, police in High Point, NC, who had been sporadically
arresting drug dealers in a long-established crack market for 2
decades and finding that every arrestee was quickly replaced,
changed strategies. They identified all of the currently active dealers
in that market and developed felony cases against them, but
arrested and prosecuted only 3 dealers who had been involved in
violence. They then held a meeting with the remaining dealers and
announced that anyone who continued to sell drugs would face
certain prison time. Soon after, the market disappeared, and the
number of crack-dealing arrests in the area immediately fell to near
0—and stayed there (8).

Third, a judge in Honolulu, HI, selected a group of probationers
with such high rates of noncompliance (primarily missed or ‘‘dirty’’
drug tests) that they faced possible probation revocation and
incarceration. Instead of sending them to prison at once, he warned
them that they would be subject to increased drug-testing frequency
and that any violation would lead to an immediate and certain,
although short (measured in days, not months) jail sentence. The

absolute number (not just the rate) of detected violations de-
creased; the majority of those who received warnings never needed
to be sanctioned at all (9).†

These observations help illustrate the potential interactions
among 3 variables: The rate at which a rule is broken, the probability
that any given incident of rule-breaking leads to punishment, and
the total quantity of punishment actually administered. They can be
explained by a common-sense observation known to everyone who
has successfully raised a child or trained a pet; holding sanction
intensity constant, the more credible the commitment to punish
rule-breaking is, the more likely it is to succeed in discouraging the
targeted behavior, and therefore the less likely it is that the
threatened punishment will actually take place (10). This recalls the
chess maxim that ‘‘the threat is stronger than its execution.’’‡

Those enforcing rules on multiple subjects face an additional
complexity due to positive feedbacks in violation rates. When
several persons are subject to some rule and sanctions capacity is
constrained, the subjects face interdependent choices: The higher
the prevalence of violation, the less the risk of sanction for any given
violator. This idea is referred to as ‘‘enforcement swamping’’ (11)
or the ‘‘overload theory’’ (12) and is well known in the deterrence
(11–17) and urban riot (18) literatures. The result can be a
2-equilibrium ‘‘tipping’’ situation, in which both high and low
violation rates are self-sustaining, and temporary interventions can
therefore have lasting consequences if they push the system across
the tipping point (19, 20).§

The application to criminal justice policy is transparent, but the
same thinking can be usefully applied to any interaction between a
group of individuals who might violate some rule and an authority
with limited capacity to punish such violations: A teacher facing a
classroom, a manager dealing with many subordinates, a regulatory
agency attempting to control the behavior of many firms, a tax
collection agency trying to minimize cheating. Despite the ubiquity
of situations that feature such interdependency, the problem of
finding enforcement strategies to minimize violations and sanctions
in a dynamic context remains largely unstudied.¶
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¶Previously published theoretical models suggest that focused enforcement with announce-
mentcanoutperformastrategyofrandomenforcement(21).Usingcomputationalmodeling,
this paper builds on these efforts by (i) focusing on repeated game settings, (ii) relaxing the
assumption that potential offenders have perfect information about the probability of being
punished, (iii) allowing those subject to a rule to update their subjective probability of being
punished in Bayesian fashion, and (iv) showing that dynamic concentration as a punishment-
allocation strategy can reduce both offense levels and punishment levels, compared to
equal-probabilitypunishment.Thesamegamehasalsobeenapproachedfromtheother side,
focusing on the problem of political dissenters who need to coordinate the time of their
dissent to minimize the punishment risk faced by each 1 of them (22). van Baal’s book on
computer simulations of criminal deterrence (23) does not address our main concern about
how to choose who to sanction when the number of offenders exceeds the number of
available sanctions.
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We begin with a simple 1-player compliance game to show that
increasing the severity or probability of punishment can lead to less
actual punishment. We then show that the same holds for 2
potential offenders, and moreover that assigning 1 of 2 potential
offenders priority for punishment, and making that assignment
common knowledge, can reduce the punishment capacity needed
to secure complete compliance with no actual punishment use.
These results generalize to n potential offenders, where n need not
even be finite; under standard the rational-actor, common-
knowledge assumptions of game theory, a single threatened sanc-
tion can deter countably many potential violators, without ever
needing to be actually imposed, as long as the sanction is greater
than the cost of compliance and the order of priority for punish-
ment is fixed and known to all.

From there, we use a simulation model to show the inverse
relationship between punishment capacity and punishment utiliza-
tion and the superiority of prioritized over equal-probability sanc-
tioning both hold for repeated games where behavior is stochastic
and where individualistic Bayesian-updating rational agents evalu-
ate the probability of being sanctioned based on personal experi-
ence. These games display tipping behavior; relaxing the punish-
ment-capacity constraint can reduce the amount of punishment
actually inflicted, as the system ‘‘tips’’ from a high-violation to a
low-violation equilibrium, so that a temporary increment to en-
forcement capacity may have lasting benefits, and prioritization
(‘‘dynamic concentration’’) can be made to do the work of that
temporary increment while reducing the volume of actual punish-
ment required to ‘‘tip’’ the system to its high-compliance equilib-
rium.

Results
A Compliance Game with 1 Potential Offender. Assume an econom-
ically rational actor subject to some rule. If he breaks the rule, he
pays a penalty P. If he complies, he pays compliance cost C. For
instance, a firm subject to an environmental regulation might have
to decide between obeying it and paying some cost in the form of
higher production costs, or violating it and paying a regulatory
penalty.

A rational subject will never violate if the penalty for breaking the
rule is above the cost of compliance or gain from violation.
Therefore as the penalty imposed in case of a violation crosses the
threshold from C - � to C � �, the violation rate goes from unity
(a violation every time) to 0, and the total penalty imposed falls
from C - � to 0, because the rule is not violated, and therefore no
penalty is incurred. Thus increasing the severity of punishment can
lead to less punishment being actually used.

If instead of being certain the penalty is applied stochastically,
and the potential violator is risk-neutral, then the rule will be
broken just in case the expected value of punishment—the prob-
ability of punishment conditional on violation p times the penalty
P—is less than C. That is, violation occurs if and only if pP � C. The
critical value of the probability of punishment conditional on
compliance is therefore p* � C/P. Below p*, the violation rate will
be unity. Above that probability, the violation rate will be 0;
increasing the probability is equivalent to increasing the penalty.

As the probability of punishment p grows from 0 to C/P, the
subject’s behavior doesn’t change, and the expected punishment per
turn grows from 0 to p*P. But as soon as p is high enough so that
p*P � C, our imagined perfectly rational subject will stop violating,
and the amount of penalty collected will fall back to 0. Thus
increasing the probability of punishment, like increasing its severity,
can economize on actual punishment utilization.

It is worth noting that under the conditions as hypothesized, an
empirical investigation of the relationship between severity or
probability of punishment and violation rates will show no benefit
of enforcement as long as the range of empirical experience remains
below the critical values.

A 1-Shot Sequential Compliance Game with n Potential Offenders.
When there are multiple potential offenders and sanctions capacity
is constrained, the potential offenders may find themselves in a
situation of interdependent choice, where the optimal play for each
depends on the play of the others.

Once again, assume that each subject will violate the rule just in
case the cost of compliance is greater than the expected sanction
(24). Assume also an enforcement agency with perfect information
about violations (see SI Text for a formal exposition of the
enforcement agency’s problem). The game has 7 rules:

1. The game is played once and not repeated.
2. The game is played by n subjects, A1, A2, … Ai, … An, each

strategic, self-interested, and risk-neutral, and known to be so by
the other players. (The enforcement agency is not modeled as a
player.)

3. Each subject either complies with the rule, incurring a compli-
ance cost (or opportunity cost of forgone chance to violate) C,
or violates the rule. Each violator either pays a penalty, P, where
C � P � nC, or escapes without penalty, depending on the
strategy adopted by the enforcer. P and C are identical across
players and that fact is common knowledge.

4. Moves are sequential. A1 moves before A2, A2 moves before A3,
and so on. Each player is aware of the rules and of the decisions
made by the previous players.

5. There is only 1 sanction available, and it must be used when there
is a violation.

6. The sanction is not assigned until all subjects have made their
choice.

7. Players cannot communicate directly and cannot make side-
payments. (If this were not true, then 2 players could agree to
both violate, with those who escape punishment compensating
the one who incurs punishment, and that agreement would be
robust to any enforcement strategy.)

Proposition 1. In an n-player game when C � P � nC and the
sanction is randomly assigned, if any player violates, ‘‘all violate’’ is
a Nash equilibrium.

Consider first the sequential 2-player game. If only 1 player
violates, he is punished with certainty; if both players violate, each
has a 0.5 chance of being punished. Fig. 1 displays the sequential
game and the expected payoffs. If A1 has complied, then A2 pays
P if A2 violates. Because P � C, A2 chooses to pay C to comply. That
vindicates A1’s decision to comply, because with A2 complying, A1
would have faced P (� C) for violation. Thus comply-comply is a
Nash equilibrium.

But if A1 violates, the expected cost of violation by A2 is P/2, by
assumption less than C. Because A2 is risk-neutral, A2 violates. This
again vindicates A1’s choice, because he now faces an expected cost

A11A1AA1

ComplyComplyComplyComply ViolateViolateViolateViolate

A22A2AA2

ComplyComplyComplyComply ViolateViolateViolateViolate ComplyComplyComplyComply ViolateViolateViolateViolate

((((----C, ,C,CC, ----C))C)CC) ((((----C, ,C,CC, ----P))P)PP) ((((----P, ,P,PP, ----C))C)CC) ((((----P/2,P/2,P/2,P/2,----P/2)P/2)P/2)P/2)

Fig. 1. Sequential game with a coin-flip to assign 1 sanction if there are 2
violators. Players pay C to comply and P if they are sanctioned.
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of P/2 rather than P for his violation. Thus, violate-violate is also a
Nash equilibrium.

Therefore A1, in reasoning strategically about his move, faces in
effect a choice between complying at cost C and not complying at
cost P/2 � C. Thus he rationally chooses not to comply, and A2
follows suit. Strategically rational play by both players thus leads to
both to violate.� The result trivially generalizes to n players under
the assumption of perfect rationality as common knowledge; as
long as P/n � C, all violate.††

If we amend Rule 4 to make this a simultaneous game
instead of a sequential game, the participants are in a ‘‘stag
hunt’’ (25). If both violate, both are better off than if they both
comply. But if only 1 violates, he is worse off than he would
have been had he complied. Thus neither has a dominant
strategy, and the outcome is indeterminate.

Proposition 2. Increasing the capacity to punish can decrease the
amount of punishment actually inflicted.

Proposition 1 shows that with 2 players moving sequentially and
1 randomly assigned punishment available, punishment will always
be inflicted because both players will violate the rule. But if the
punishment constraint is publicly relaxed so that both players know
that both will be punished if both violate, then compliance is the
dominant strategy for each player as long as P � C. If both comply,
neither is punished. Therefore relaxing the punishment-capacity
constraint from 1 to 2 (in an n-player game, to any value x such that
P(x/n)�C) reduces the number of punishments actually inflicted
from 1 to 0.

Proposition 3. Even with a punishment-capacity constraint, estab-
lishing a priority order for punishment among potential violators
makes universal compliance the only Nash equilibrium as long as
the sanction cost is greater than the cost of compliance.

The ‘‘equal-opportunity’’ enforcement strategy under which each
violator has the same probability of punishment is not the optimal
strategy for an enforcement agent interested in reducing the
violation rate and in economizing the use of actual punishment.
Departing from that rule by announcing a priority order for
punishment can substitute for relaxing the punishment-capacity
constraint.

In the 2-player case, let the enforcer assign priority for punish-
ment to A1. Now A1 complies, because otherwise he is certain to be
punished. Therefore A2 also complies. Instead of 1 violation and 1
punishment, the result is 0 violations and 0 punishments.

The same holds if A2 has priority. Now A2 faces certain punish-
ment if he violates, no matter what A1 does. Therefore he will
always comply. A1, knowing that, knows that he faces certain
punishment if he violates; therefore he will also comply. Threat-
ening either player with certain punishment in case of violation
therefore deters both.

That result holds if moves are simultaneous rather than sequen-
tial. The directly threatened player will always comply, and there-
fore the other player can never hope to violate with impunity
because the single sanction will always remain available for him.

This result generalizes directly to the n-player case, whether the
moves are sequential or simultaneous. Let the enforcer assign to
each of the n players a unique and immutable priority number, the
numbers ranging from 1 to n. (Because the players are identical, we
can assume without loss of generality that each of the Ai has priority

i). The players then move, thus partitioning themselves into 2
subsets: Compliers and Violators. Compliers pay C. The member of
the Violator subset with the highest priority (lowest priority num-
ber), Vmin, pays the sanction P � C. All other players in the Violator
subset pay 0.

Vmin has made a mistake. He pays P, when he would have paid
only C � P by complying. Therefore, Vmin would prefer to change
strategies and move to the Complier subset. But that leaves a new
Vmin, similarly discontented. As long as there is at least 1 player in
the Violator subset, 1 player will have an incentive to change
strategies. Thus, only universal compliance is a Nash equilibrium.

To put the argument formally: It is the condition of a Nash
equilibrium that the Violator subset have no lowest-numbered
member, but every non-empty subset of the natural numbers has a
least element, therefore in equilibrium the Violator subset must be
empty. This is equivalent to a proof by mathematical induction: the
proposition ‘‘The player with priority number n would regret
violating’’ is true if n � 1 (because the first person on the
punishment-priority list can never get away with a violation) and
always true of n � 1 if it is true of n (because if player n would regret
violating, he will not violate, in which case player n � 1 would regret
violating). The proposition is thus true for all of the natural
numbers, so every player would regret violating; therefore all will
comply.

As long as players are rational and their rationality is common
knowledge, all potential violators can thus be deterred with a single
threat, which never needs to be made good. This is the strategy of
the proverbial Texas Ranger with just 1 bullet in his gun who
prevents an angry mob from rushing the jail when he says—and,
crucially, is believed when he says—that he will shoot the first
person who steps forward. No member of the mob wants to be first.
But if no one is first, then no one ever steps forward, and no one
is shot.

The claim that it is possible to deter not merely any finite number
but any countable number of potential offenders with a single
threat, and therefore never to have to deliver on the threat, seems
implausible if made about the empirical world. While it would be
true for a hypothetical group of perfectly rational actors if the
rationality of all were common knowledge among them, the ‘‘Texas
Ranger’’ strategy is not robust to mistakes by members of the target
group. For example, it will fail if a member of the mob is too drunk
to understand the warning, too angry to heed it, accidentally
stumbles forward, or is pushed from behind by another member of
the mob who thinks strategically. In an imperfect world, the larger
the number of participants the higher the probability that 1 of them
will violate in error, thus making it rational for all those below him
on the priority ordering list to violate as well.

That raises the question of how rational participants would
respond to a world of uncertainty about one another’s behavior, and
how an enforcement agency could use any given level of punish-
ment capacity to maximum advantage. The resulting problem in
interdependent decision-making under uncertainty is best explored
by simulation.

Simulation Results. Now consider a multi-round compliance/
enforcement game with n potential offenders, each of whom, acting
simultaneously, violates or complies on each round. Each violator
is or is not punished by an enforcer with a limited supply of
sanctions, and updates his subjective probability of punishment
(conditional on violation) accordingly, starting with a universal
prior probability and using Bayesian updating. (They do not, in this
model, know about or learn from the experience of other subjects,
although the model could be adapted to allow such vicarious
learning.) When the number of potential offenders exceeds the
number of available sanctions, the enforcement agency must decide
how to allocate the sanctions.

Consider 2 sanctioning strategies: Random sanctioning and
dynamic concentration. With random sanctioning, the enforcer

�If P � C, then violation is a dominant strategy for both players; if P � 2C, then compliance
is stochastically dominant for both players, because in that case P/2, the expected value of
punishment, is greater than the cost of compliance even if both players were to violate. So
only the intermediate case where C is between P and 2P (more generally, between P and
nP) is strategically complex.

††However, if there is any player who attributes to each other player a nonzero probability
of defection, then that player’s subjective estimate of the probability that someone else
will defect, and therefore that player’s incentive to defect, tends toward unity as n grows.
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randomly assigns up to S sanctions among V violators on every trial.
If V � S, the probability of punishment given violation is unity. If
V � S, each violator is punished with probability S/V, which falls as
the number of violators rises. (If S is greater than V in a trial, the
excess sanctions go unused and cannot be saved for future trials.)
With dynamic concentration, each subject is assigned an immutable
priority number, ranging from 1 to n. If V � S, the S violators with
the highest priority (lowest priority numbers) are punished with
certainty; others are not punished. Thus dynamic concentration is
the stochastic analog of the priority-order system in the determin-
istic case.

For 2 potential offenders and a single sanction available each
round, there are 2 equilibria, 1 with both violating and 1 with both
complying (see Figs. S1 and S2). Which equilibrium is reached
depends on the offenders’ initial beliefs about the probability of
punishment conditional on violation; if both offenders start out
with sufficiently low subjective probabilities of punishment, they
will always reach the violate-violate equilibrium; with sufficiently
high priors, they will always reach the comply-comply equilibrium.

From the high-violation equilibrium, adding a second sanction
forces the system to the low-violation equilibrium, which remains
stable if the second sanction is then removed.

The enforcer can ‘‘tip’’ the system from the high-violation to the
low-violation equilibrium without adding a second sanction by
giving 1 of the offenders priority in sanctioning (i.e., using the
strategy of dynamic concentration). The number of rounds before
reaching the low-violation equilibrium, and the number of sanctions
assigned, falls if some exogenous shock (which in practice might be
a warning) causes the offenders to raise their prior probability
estimates or to update their beliefs more quickly.

As in the deterministic analysis, the simulation results for 2
potential offenders generalizes to n potential offenders: There are
2 equilibria; which is reached depends on the initial subjective
probabilities; increasing sanctions capacity can reduce the level of
sanctions actually imposed; a temporary increment to sanctions
capacity can ‘‘tip’’ the system to its low-violation equilibrium; and
dynamic concentration will outperform equal-probability sanction-
ing. The same outcomes result if we relax the assumption that each
violator has a constant cost of compliance C.

Consider a situation where there are 100 potential offenders and
the enforcer has more than 1 sanction available. Begin by assuming
that everyone has a prior probability of sanction given violation
equal to 5% (� � 1 and � � 19).

Fig. 2A displays simulation results that compare the number of
violations committed under random sanctioning (solid line) and
dynamic concentration (dashed). The y-axis measures the total
number of violations committed in a simulation with 500 trials and
the x-axis represents S. For both strategies, a simulation is per-
formed at 100 different levels of S and the total number of sanctions
is recorded for each increment of S. The mean of the total number
of sanctions is based on 20 runs of the simulation (for a total of 4,000
simulations).

Increasing sanctions capacity eventually creates a low-offending
equilibrium in both cases, but the 2 strategies follow different
pathways to this equilibrium. The area under the violation curve is
considerably smaller for dynamic concentration than for random
sanctioning.

Fig. 2B is based on the same simulations used to generate Fig. 2A,
but now we plot the number of sanctions delivered as a function of
sanctions capacity. For both strategies there is a linear increase in
total sanctions delivered as sanctions capacity increases up to the
tipping point value of S. Once that critical value is reached, the
system moves to a high-expected-sanction, low-violation equilib-
rium with lower use of actual sanctions. Dynamic concentration
reduces the sanctions capacity required to get to the low-offending/
high-expected sanction equilibrium.

Now assume that all offenders have a prior probability of
sanction given violation equal to 50%, rather than the 5% assumed

in the previous simulation (Fig. S3). That change decreases the time
it takes to get to the tipping point for both random sanctioning and
dynamic concentration, and also increases the advantage of dy-
namic concentration.†† Conversely, when the prior probability is 1%
(Fig. S4), the curves for random sanctioning and dynamic concen-
tration are closer to each other. While dynamic concentration still
leads to fewer violations than the random sanctioning in the 1%
scenario, the differences are not quite as dramatic as they are in the
other scenarios. These sensitivity analyses suggest that dynamic
concentration can lead to more spectacular results when the prior
probability of sanction given violation is increased at baseline, for
example with a warning, consistent with actual practice in both the
High Point intervention (8) and the Hawaii probation project (7).

††In Fig. 2, the tipping point for random sanctioning is �20% higher than it is for dynamic
concentration; the comparable number for Fig. S3 is �33%.

Fig. 2. Dynamic concentration reduces violations and the critical value of the
sanctions constraint. [Prior probability of sanction given violation: 5% (� � 1 and
� � 19)]. The y-axes measure the total number of violations (A) and sanctions
delivered (B) in a simulation with 500 trials and the x-axis represents the enforce-
ment agency’s sanction capacity, S. The dashed line represents dynamic concen-
tration and the solid line represents random sanctioning. The mean number of
violations and sanctions is based on 20 simulations for each increment of S.
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Thus, although in a stochastic world it is not possible to make
threats do all of the work, and therefore not possible to control
infinite numbers of subjects with a single threatened penalty,
distributing sanctions according to a fixed priority order greatly
improves the terms of the tradeoff between reducing violation rates
and economizing on sanctions.

Discussion
When punishment capacity is constrained and offenders’ behav-
ior responds to changes in the probability of punishment, a
dual-equilibrium ‘‘tipping’’ situation can result. In that case,
temporary increases in punishment capacity can lead to lasting
changes in violation rates. A strategy of dynamically concentrat-
ing sanctions on a subset of violators can reduce violation rates
and the total amount of punishment actually delivered. When
the capacity to punish is constrained, dynamic concentration can
be more effective and less costly than randomly assigning
sanctions to offenders.

These findings help us explain the spectacular results of some
criminal-justice interventions using focused deterrence (6–8,
26), which seen in this light are not as surprising as experience
with equi-probability enforcement made them appear. Dynam-
ically concentrating sanctions is an attractive alternative to the
current system of more or less random sanctioning.

Finally, these results may also point the way to continuing the
past decade’s decrease in crime rates while reversing the 20-
year-long prison-building boom, which has given the United
States, with 2.2 million people behind bars at any 1 time, the
dubious distinction of having the world’s highest rate of incar-
ceration per capita (27, 28).§§

The applicability of these models in any given situation is an
empirical question, not one that can be answered by game trees or
simulation modeling. But the strategy of dynamic concentration is
potentially applicable whenever those subject to a rule are some-
what deterrable and where sanctions capacity is scarce compared to
the number of detected violations. Advances in monitoring tech-
nology such as GPS tracking and remote and continuous alcohol
testing increase the range of circumstances in which monitoring is
easy, making punishment capacity the binding constraint, and
putting a premium on strategies such as dynamic concentration that
maintain deterrence while economizing on actual punishment.

These monitoring technologies are becoming popular in criminal
justice settings, and they can generate a tremendous amount of
information (29). In situations when probation officers in a partic-
ular office are overwhelmed by the violations and cannot appre-
hend and sanction all of the offenders, dynamic concentration
would be a better strategy than randomly targeting violators. In
practice, priority for sanctions with dynamic concentration would
be established by group rather than by individual. A subset of
potential violators—perhaps those probationers who committed
the most violations in the past—is selected for ‘‘zero-tolerance’’
enforcement and is sanctioned for every violation. The size of that
initial group is limited by the capacity of the system to impose
sanctions. Once the violation rate within that group falls to the point
where the available sanctions capacity (in the form of court time for
hearings and jail cells for punishment) is no longer being fully
absorbed, the range of people subject to ‘‘zero-tolerance’’ enforce-
ment can be expanded without adding sanctions capacity.

Situations in which the constrained resource detection capacity
rather than sanctions capacity require different strategies, because
in that circumstance success in reducing the violation rate does not
generate resource savings to the same extent; thus maintaining low

violation rates will in general be more costly than in the case
considered here. Drunk-driving roadblocks provide an example; a
roadblock quickly reduces violation rates, but the fixed cost of the
roadblock remains even as violation rates fall, and is thus hard to
sustain over time. The problem of optimal monitoring and pun-
ishment strategy when both monitoring and punishment are costly
is a target for future research.

The model presented here could also be usefully extended in
at least 6 different directions. First, the assumption that each
offender learns only from his own experience could be relaxed
by allowing learning from the experience of others (to model
general, as opposed to specific, deterrence). As a further exten-
sion, the model might allow each offender to learn more readily
from the experience of some of his peers than from others; the
optimal sanctions policy is likely to vary in complex ways with the
structure of that sociogram (see SI Text for thoughts about
collusion). Intuition suggests that more-central individuals are
more worth concentrating on early than others, but that might
not always be the case. Modeling the internal dynamics of these
subgroups would also allow one to introduce collective punish-
ments. A further complication would come from relaxing the
assumption that the participants cannot collude. If they can
coordinate perfectly, they can defeat the strategy of dynamic
concentration; if their capacity to coordinate is limited, then the
enforcement agency will need to craft strategies to make suc-
cessful collusion harder.

Second, the enforcement agency could be allowed to communi-
cate warnings to offenders, as in the High Point and Honolulu
examples (7, 8). Because the game between each offender and the
enforcer is not zero-sum, credible communication is possible,
reaching a low-violation equilibrium by sparing potential offenders
the cost of ‘‘finding out the hard way’’ and sparing enforcers the cost
of administering sanctions. The problem of finding an optimal
warning strategy will not always have an obvious solution; too
aggressive a warning strategy risks making threats that cannot be
delivered on, thereby weakening the credibility of all such threats
for the future.

Third, the enforcement agency could be allowed to vary the
severity of punishment instead of its probability. Our intuition is
that dynamic concentration would greatly reduce the severity level
required to ‘‘tip’’ from the high-violation equilibrium to the low-
violation equilibrium.

Fourth, the assumption of perfect rationality could be relaxed,
making some or all offenders subject to temporal myopia (30),
prospect-theoretic behavior (31), or optimistic bias (32, 33). In
general, these will increase the importance of certainty and swift-
ness of punishment compared to severity (34), but the problem of
finding an optimal strategy in a population with mixed decision
styles, and especially in a population whose decision styles have to
be deduced from behavior, remains to be addressed.

Fifth, the closed nature of the process, with no subjects entering
and none leaving, could be relaxed, and removing a subject from the
process (e.g., by imprisonment in the law enforcement context,
expulsion in the classroom context, or firing in the managerial
context) could be added to the enforcement agency’s repertoire.

Sixth, another extension could allow for heterogeneity of offenses
as well as offenders, in terms both of severity and of deterrability.

As noted, the potential usefulness of dynamic concentration
extends well beyond criminal-justice settings. The principles apply
to anyone trying to enforce rules where monitoring is relatively easy
but the stock of sanctions is limited. Managers, teachers, and
parents all face analogous problems. So do tax collectors and those
charged with enforcing environmental, workplace-safety, and prod-
uct-safety regulations. Because the model assumes that those
subject to the rule act strategically but not in coordinated fashion,
it may have only limited applicability to armed conflict or organized
insurgency, as opposed to crowd control (20). Sometimes the

§§That adding sanctions capacity can, mathematically, reduce actual sanctions use does not
imply that any actual increase in sanctions capacity, e.g., building more prisons, will lead
to less punishment. That depends on circumstances and on how the additional capacity
is used; using more prison cells to impose longer terms does not increase certainty and
therefore will increase, rather than decrease, total punishment actually inflicted.
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relevant concentration will be on individuals, but it might just as
well be on organizations, geographic regions, or violation types.

In every case the principle is the same: Better to actually control
someone or somewhere or something than to fail in an attempt to
control everyone and everywhere and everything. That casts doubt
on the optimality of ‘‘zero-tolerance’’ policies unless the range of
what will not be tolerated and the size of the population to be
controlled is calibrated to the available sanctions capacity and
clearly announced in advance.

The applicability of this principle is limited to circumstances in
which it is the capacity to punish rather than the capacity to detect
violations that is the binding constraint; to open drug dealing, for
example, rather than burglary. But the alligators-and-swamp prob-
lem of law enforcement in a high-violation context may be more
tractable than it looked at first glance.

Materials and Methods
For every trial of a simulation, let each subject face a cost of compliance C with a
mean equal to one-half P (changing the value of C within the range P � C � P/n
would change the numerical results but leave the qualitative results intact). This
cost of compliance will vary by offender and vary over time. Because the subjects
are rational, the decision to comply or violate depends not only on C and P, but

also on that subject’s estimate of the probability of punishment given violation,
which changes with that player’s experience.

The enforcer has sanctions capacity S and can choose which violators to
sanction, up to S violators per trial. As in the simple compliance game, the
enforcer has perfect information about which subjects violate and chooses a
sanctioning strategy that determines how this information is used.

Assume that all offenders begin with the same prior probability of sanction
given violation and generate a posterior probability using this formula: (� �
number of sanctions)/(� � � � number of violations), where � and � are both
fixed positive constants determined exogenously (35). A trial is any unit of time;
in modeling probation enforcement, a trial might be, for example, the period
between drug tests. See SI Text for more information about the simulation.
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